/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; -*- */ #include <math.h> #include "ns3/log.h" #include "ns3/mobility-model.h" #include "ns3/double.h" #include "leo-propagation-loss-model.h" namespace ns3 { NS_LOG_COMPONENT_DEFINE ("LeoPropagationLossModel"); NS_OBJECT_ENSURE_REGISTERED (LeoPropagationLossModel); TypeId LeoPropagationLossModel::GetTypeId (void) { static TypeId tid = TypeId ("ns3::LeoPropagationLossModel") .SetParent<PropagationLossModel> () .SetGroupName ("Leo") .AddConstructor<LeoPropagationLossModel> () .AddAttribute ("ElevationAngle", "Cut-off angle for signal propagation", DoubleValue (40.0), MakeDoubleAccessor (&LeoPropagationLossModel::SetElevationAngle, &LeoPropagationLossModel::GetElevationAngle), MakeDoubleChecker<double> ()) .AddAttribute ("AtmosphericLoss", "Atmospheric loss due to attenuation in dB", DoubleValue (0.0), MakeDoubleAccessor (&LeoPropagationLossModel::m_atmosphericLoss), MakeDoubleChecker<double> ()) .AddAttribute ("FreeSpacePathLoss", "Free space path loss in dB", DoubleValue (0.0), MakeDoubleAccessor (&LeoPropagationLossModel::m_freeSpacePathLoss), MakeDoubleChecker<double> ()) .AddAttribute ("LinkMargin", "Link margin in dB", DoubleValue (0.0), MakeDoubleAccessor (&LeoPropagationLossModel::m_linkMargin), MakeDoubleChecker<double> ()) ; return tid; } LeoPropagationLossModel::LeoPropagationLossModel () { } LeoPropagationLossModel::~LeoPropagationLossModel () { } void LeoPropagationLossModel::SetElevationAngle (double angle) { m_elevationAngle = angle * (M_PI/180.0); } double LeoPropagationLossModel::GetCutoffDistance (const Ptr<MobilityModel> sat) const { double angle = m_elevationAngle; double hs = sat->GetPosition ().GetLength (); double a = 1 + tan (angle) * tan (angle); double b = 2.0 * tan (angle) * hs; double c = hs*hs - LEO_PROP_EARTH_RAD*LEO_PROP_EARTH_RAD; double disc = b*b + 4*a*c; NS_LOG_DEBUG ("angle="<<angle<<" hs="<<hs<<" a="<<a<<" b="<<b<<" c="<<c<<" disc="<<disc); if (disc < 0) { // point not on earth surface return - 1.0; } double t1 = (-b - sqrt (disc)) / (2.0 * a); double t2 = (-b + sqrt (disc)) / (2.0 * a); double num1 = Vector2D (t1, - tan (angle) * t1).GetLength (); double num2 = Vector2D (t2, - tan (angle) * t2).GetLength (); return fmin (num1, num2); } double LeoPropagationLossModel::GetElevationAngle () const { return m_elevationAngle * (180.0/M_PI); } double LeoPropagationLossModel::DoCalcRxPower (double txPowerDbm, Ptr<MobilityModel> a, Ptr<MobilityModel> b) const { Ptr<MobilityModel> sat = a->GetPosition ().GetLength () > b->GetPosition ().GetLength () ? a : b; double distance = a->GetDistanceFrom (b); double cutOff = GetCutoffDistance (sat); if (distance > cutOff) { NS_LOG_DEBUG ("LEO DROP distance: a=" << a->GetPosition () << " b=" << b->GetPosition ()<<" dist=" << distance<<" cutoff="<<cutOff); return -1000.0; } // txPowerDbm includes tx antenna gain and losses // receiver loss and gain added at net device // P_{RX} = P_{TX} + G_{TX} - L_{TX} - L_{FS} - L_M + G_{RX} - L_{RX} double rxc = txPowerDbm - m_atmosphericLoss - m_freeSpacePathLoss - m_linkMargin; NS_LOG_DEBUG ("LEO TRANSMIT distance: a=" << a->GetPosition () << " b=" << b->GetPosition ()<<" dist=" << distance <<" cutoff="<<cutOff<< "rxc=" << rxc); return rxc; } int64_t LeoPropagationLossModel::DoAssignStreams (int64_t stream) { return 0; } };